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Abstract 

The continued growth of vacuum-based processes has warranted the development 
of both models and experimental studies designed to capture the unique aspects 
associated with this manufacturing technique. To that end, this report summarizes an 
initial set of experiments that characterize both the process and the resulting mechanical 
properties of components fabricated under a variety of process conditions- Specifically, 
resin flow studies a& presented in part to demonstrate the relative influence of key 
parameters on the flow front developed during impregnation. The effect of the 
distribution medium, which is used in a commercial version of VARTM known as 
Seeman’s Composite Resin Infusion Molding Process (SCRIMP), is explicitly 
characterized. In addition, the variation of part thickness is also examined, and 
potential mechanisms responsible for these variations are presented. A battery of 
mechanical tests designed to correlate the effect of various processing conditions are 
also presented. A major finding is that thickness variation can be significant and, to 
some degree, random; also, precompaction of the preform significantly influences the 
amount of consolidation pressure needed during impregnation. Dimensional variations 
due to gradients in the pressure distribution of the vacuum affect permeability (and 
hence resin flow), as well as dimensional tolerances in manufactured parts. 

ii 



Acknowledgments 

The authors wish to thank Melissa Klusewicz, David Spagnuolo, Paul Moy, John 
Brown, Fred Goetz, Andrew Ashton, and Doug Strand from the U.S. Army 
Research Laboratory (ARL), Aberdeen Proving Ground, MD. We also 
acknowledge the work of ARL student contractors Chris Klug from the 
University of Maryland and Eric Fine, Scott Vandry, and Michael Poot from the 
University of Delaware. 

. . . 
i l l 



INTENTIONALLY um BLANK. 



Contents 

Acknowledgments 
. . . 
111 

List of Figures vii 

List of Tables 

1. Introduction 

2. Motivation for Resent Research 

3. Experimental 

3.1 Materials 

3.2 Methods 

3.3 Mechanical Compressibility of Fiber Preform 

3.4 Physical/Mechanical Properties 

3.5 Resin Infusion Experiments 

4. Results and Discussion 7 

4.1 Discussion of Flow Results 7 

4.2 Discussion of Resin Infusion Results 8 

4.3 Material Properties/Compressibility 10 

4.4 Physical and Mechanical Properties 15 

5. Conclusions 

6. References 

Distribution List 

Report Documentation Page 

ix 

1 

2 

16 

19 

21 

39 

V 



vi 



List of Figures 

Figure 1. Typical VARTM process. . ..---...f............_.....,f.......,............,....,_...__.......__f._...f. 2 

Figure 2. Infusion on glass tabletop with mirror underneath to observe 
and record flow on bottom of preform. +.++....+.. + ..fff........f..............f................f........ 3 

Figure 3. 

Figure 4. 

Figure 5. 

Figure 6. 

Figure 7. 

Figure 8. 

Figure 9. 

Laminate with distribution medium on left half ........................................ 5 

Installation of SMARTweave adjacent to tool (glass) surface. ................. 6 

Manual tracing of flow fronts during impregnation. ............................... -6 

Bottom view of flow front contours on tool (glass) surface.. ................... .8 

Infusion time across top of preform surface. .............................................. 9 

Infusion time across bottom of preform surface. ....................................... 9 

Cured part thickness vs. distance relative to vacuum source. ............... 10 

Figure 10. Graph of fiber volume fraction change vs. distance relative to 
vacuum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

Figure 11. Compressibility curves for 43 plies of fiberglass fabric loaded 
twice from 0 to 90 psi (full scale not shown) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e . . . . 11 

Figure 12. Compressibility curves for nine plies of fiberglass fabric 
loaded three times from 0 to 90 psi (full scale not shown). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

Figure 13. Compressibility curves for nine plies of fiberglass fabric 
loaded from 0 a&n to 0.33 atm (O-5 psi) . . . . . . . . . . . ..-..........-........................*.............* 12 

Figure 14. Compressibility curves for nine plies of fiberglass fabric 
loaded from 0 atm to 1 atm (O-15 psi). Top curve loaded twice from 0 
atm to 1 atm (O-15 psi), which resulted in a higher fiber volume 
fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

Figure 15. Comparison of static (15 psi) and dynamic (5-15 psi) loading 
on a fiberglass preform. . . . . . . . . . . . . . . . . . I . . . . . . . . . . . . e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . . ...14 

Figure 16. Comparison of wet and dry fiberglass preforms under 
dynamic loading (5-15 psi) . 1.....*.....***..***......,..*~.~..*.--..-...-..*-.*.....*..*........*....*....... 14 

Vii 



. . . 
VXll 



List of Tables 

Table 1. Predicted fiber volume fractions of wet and dry fiberglass 
preforms compressed in an In&on mechanical test frame. . . . . . . . . . . . . ..-......-. 15 

Table 2. Fiber volume fractions of composite parts processed under 
different conditions. _._.__..__...,..,...,...............f....,..............,...f......_...........f..._............ 15 

Table 3. Mechanical properties of composite materials processed under 
different conditions. . . . . . .._.__._ _ _._._.._.._._.__.___._ I _~.._..__....____...___.___._______________________._______ 16 

ix 



INTENTX~NULY LEFT BLANK. 

X 



1. Introduction 

The benefits of vacuum assisted resin transfer molding (VARTM) are well known 
for certain applications (e.g., large hull structures, structural members, and 
transport compartments). These benefits include low volatile emissions, reduced 
tooling costs, and decreased cycle times associated with the process [l-2]. There 
is, however, the potential for the lack of part-to-part consistency, and the overall 
part quality may not be equal to conventional prepreg materials. Recent work 
has been published on the effects of fiber compaction on the quality/mechanical 
properties of composite materials processed with VARTM [3-lo]. The lower 
fiber volume fraction (Vf) associated with a low-pressure molding process may 
not be a problem for relatively thin section, nonstructural/nonballistic 
applications, but for areas where thick section composites are needed, further 
research into process optimization must be performed. If high fiber volume, 
thick-section composites can be manufactured by a low cost VARTM process or 
by a modified VARTM process, the increased use of these materials will be seen 
in a variety of vehicle and structural applications. 

In less than a decade, a major shift has occurred in the processing of large, 
relatively complex fiber-reinforced structures. This shift is centered primarily 
around the adoption of purely vacuum based processes and the migration to 
one-sided, inexpensive tooling. These processes are generally known as VARTM 
and include a number of patented and commercialized processes such as 
SCRIMP [9]. 

The principal advantage of the VARTM class of processes is the inherent cost- 
effectiveness associated with its implementation. Processing costs alone 
constitute between 50 and 60% of the typical end item cost; thus, there is 
significant incentive to continually explore new processes that can affordably 
provide the desired properties. A typical VARTM process is illustrated in 
Figure 1, where a preform is laid up onto a one-sided tool. The preform may 
already be stitched, or successive layers can be stacked up until the desired part 
thickness is achieved. Next, a series of feed tubes is placed around the structure 
to enable a continuous supply of resin to the part. In the case of SCRIMP [9], a 
patented and commercialized process, a lover of distribution medium is also 
inserted. In effect, the distribution medium is a highly permeable material that 
allows the resin to flow through a fiber preform with greater ease. A vacuum 
bag is subsequently fitted over all of the aforementioned materials and fixtures. 
It is not uncommon to use a second vacuum bag to minimize variations in 
compaction pressure and guard against potential vacuum leaks in the primary 
vacuum bag. 
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Figure 1. Typical VARTM process. 

Once the process is properly configured, resin is supplied at atmospheric 
pressure. The pressure differential arising from the resin source at atmospheric 
pressure, along with the evacuated preform, stimulates resin impregnation of the 
fibrous preforms. Although this process appears to be quite simple, a number of 
disadvantages exist in the current practice of VARTM processing, and relatively 
little is understood about the coupled nature of the resin flow and preform 
consolidation [ll, 121. 

2. Motivation for Present Research 

As the resin flow front moves away from its source, its velocity decreases in 
accordance with Darcy’s law. Only recently have models appeared describing 
the unique behavior of the resin flow front in the presence of a vacuum. The 
industrial practice of VARTM has thus relied on trial and error to determine near 
optimal operating parameters and process configurations. For example, the 
“rule of thumb” is to place successive line sources approximately 18 in apart for a 
vinyl ester resin in combination with a woven glass fabric. If the spacing is much 
greater than this, the flow front begins to stall so significantly that the total 
impregnation time can be doubled. Much of the success in VARTM has been 
achieved through trial and error; a more rigorous and fundamental 
understanding of the process is required to improve the process. 
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3. Experimental 

3.1 Materials 

The reinforcement material used in this study is an Owens Corning S-2 
fiberglass, 24-oz/yd* woven roving, 5 x 5 plain weave fabric. The resin used is 
Applied Polymeric SC-15, a rubber toughened, low viscosity epoxy. Test 
laminates were 20 in x 20 in x 22 plies thick; they were infused with a resin feed 
line across one end and a vacuum line across the other end of the part. A release 
film was placed on top of the preform, and then the resin distribution medium 
along with vacuum and resin feed lines were installed and sealed under a 
vacuum bag. 

3.2 Methods 

Several approaches were taken to determine how a fiber preform compresses 
and fills. To determine theoretical maximum fiber nesting, the mechanical 
compressibility of dry and wet fiber preforms was conducted on an Instron load 
frame. Mechanical test specimens using different VARTM processing 
techniques, as well as one set cured in a mechanical press, were made to 
determine mechanical variations among different techniques. Variations in the 
infusion and bagging methods were investigated, as well as preform infusion 
time with and without a resin distribution medium. All infused Darts were 
fabricated on a glass tabletop, as shown in 
infusion times could be determined. 

re 2, where both top ind bottom 

Figure 2. Inf d record flow 
on bottom of preform. 



3.3 Mechanical Compressibility of Fiber Preform 

The fiber volume fractions (Vf) of glass preforms were estimated using an In&on 
1145 mechanical load frame operated under load control. The crosshead 
displacement was determined using a linear variable displacement transducer. 
Load and displacement data were collected as a function of time. The crosshead 
displacement of the load frame was used to determine the thickness of the fiber 
pack, and it enabled the calculation of theoretical fiber volume fraction. Both 
dry- and resin-infused preforms were compressed under static and dynamic 
loads to determine the potential Vf of the composite plates manufactured under 
different processing conditions. In each test, nine plies of fiberglass fabric were 
subjected to different loading conditions. Nine ply specimens were fabricated 
for all the mechanical tests using the same processing conditions as the 22-ply 
preforms in the flow studies. 

A series of tests were conducted to measure the Vf of a dry- and resin-infused 
composite preform under dynamic and static loads. The resin-infused composite 
preforms were cured between the platens of the mechanical load frame after 
cyclic loading to compare to parts made in a mechanical compression press. 

3.4 Physical/Mechanical Properties 

The physical and mechanical properties of the composite materials were 
determined according to ASTM standards. The fiber volume fraction of the 
composites was determined through ASTM D4963. The apparent interlaminar 
shear strength was determined by the ASTM D2344 short beam shear method, 
while the flexural modulus and flexural strength were determined by ASTM 
D790. The tensile modulus and tensile strength were determined by ASTM 
D638, and the interlaminar shear response was determined by ASTM D3518 in 
545” tension. 

3.5 Resin Infusion Experiments 

Variations in infusion times were monitored and recorded while infusing 22 plies 
of S2 glass, 24 oz/yd2, 5 x 5 plain weave fabric. Relative to the preform, the 
height of the resin feed source was varied to determine the effects of gravity on 
total fill time. One set of preforms was infused with the resin feed source placed 
approximately 3 ft below the preform surface. A second set was infused with the 
resin feed source at the same height as the preform. A third set of panels was 
infused with the resin feed source placed at the same height as the preform, but a 
semi-rigid transparent thermoplastic sheet was added between the distribution 
medium and the vacuum bag. This was done to determine whether the rigid 
thermoplastic sheet would have an effect similar to a compression press with a 
rigid surface on both sides of the preform. Five panels were infused using each 



method, and the averages are reported. All parts were infused using a single 
vacuum bag while incorporating a 50% shade distribution medium on top of the 
preform (shade refers to the approximate amount of light the distribution 
medium blocks out). After infusion, parts were cured using either single or 
double bagging techniques to evaluate how this affects the cured thickness. 

Another set of experiments was conducted to provide both quantitative and 
qualitative assessments of the effect of using a distribution medium in the 
VARTM process. Using a highly porous distribution medium sandwiched 
between the preform and the vacuum bag is patent protected by Seeman [9]. A 
flow experiment was devised to reveal the relative effect of including a 
distribution medium. The general features of the experiment are shown in 
Figure 3. 

Figure 3. Laminate with distribution medium on left half. 

As Figure 3 shows, a layer of distribution medium was applied to only one half 
of a six-ply woven S-2 glass preform. A uniform line source has ban 
orthogonally located on one end; similarly, a vacuum outlet is located at the 
other. A layer of SMARTweave [13] was installed to capture the location of the 
flow front on the tool side; this is explicitly shown in Figure 4. In this particular 
apparatus, the tool side was l/2-in-thick plate glass. Glass was selected not only 
to provide direct visualization of the flow front, but also to validate the utility of 
SMARTweave as a practical in-situ method for locating flow movement and rate. 
For this experiment, a resin simulant consisting of corn syrup and water was 
used; the viscosity of the simulant was adjusted to mimic that of a typical epoxy. 
The instantaneous location of the flow front was obtained by tracing the contours 
at 30-s intervals on the top and bottom layers of the glass, as shown in Figure 5. 
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4. Results and Discussion 

4,l Djscussion of Flow Results 

The effect of the distribution medium in infusing a preform was dramatic, as 
anticipated. The flow front traversed the distance from the line source to the 
vacuum line in less than 4 min on the side of the laminate containing the 
distribution medium. It took over 2 hr for the flow front to traverse the same 
distance on the side without the distribution medium. However, there are key 
points and differences to be noted in comparing these results. First, these time 
comparisons were made on the top layer. It took over 30 min for the flow to 
traverse the same distance on the bottom surface (beneath the half with the 
distribution medium). That is, there was a significant transfer flow gradient 
through the thickness of the part. In contrast, there was virtually no gradient in 
the side without the distribution medium (i.e., the flow front was near plug flow, 
proceeding at the same rate throughout the thickness of the laminate). In 
addition, the rapid arrival of resin at the vacuum on the side with the 
distribution medium appears to have resulted in a significant drop off in vacuum 
pressure, thus causing the flow to stall significantly on the side without the 
distribution medium. The effect of liquid prematurely reaching the vacuum was 
studied previously [14]. The location and nature of the vacuum can play a very 
significant role in flow front development during impregnation. 

The flow front behavior on the tool surface of the side containing the distribution 
medium revealed other effects, as indicated by the contours shown in Figure 6. 
First, even though the flow progresses more rapidly on the surface below the 
distribution medium, the flow front itself was notably irregular. The flow 
appeared to stall and then “leap” ahead, as indicated by the peaks of the contour 
curves. This phenomenon occurred at least three times during the impregnation. 
This effect has been informally reported from various users of VARTM 
processing. Figure 6 conclusively reveals the behavior of the flow front on the 
otherwise inaccessible tool side. Given that a glass tool is not practical in an 
actual processing scenario, SMARTweave [13] is thus presented as a viable 
means for monitoring flow. 



Figure 6. Bottom view of flow front contours on tool (glass) surface. 

4.2 Discussion of Resin Infusion Results 

Another set of experiments was conducted using a 22-ply preform with a 
distribution medium across the entire top layer. A rubber-toughened epoxy was 
used for these experiments. Average resin flow front times in seconds, across the 
surface of the part, for three different infusion methods are studied. The first 
method involved feeding the part with the resin feed source placed on the floor 
approximately 3 ft below the preform surface. The second method had the resin 
feed source elevated to the same height as the preform. The third method had 
the resin feed source placed at the same height as the preform, but with a semi- 
rigid transparent thermoplastic sheet added over the distribution medium but 
under the vacuum bag. All preforms were 20 in x 20 in with the distribution 
medium 18 in x 18 in. Figure 7 shows the average infusion times across the top 
layer for each method as a function of distance traveled. Figure 8 shows the 
corresponding average infusion times for the flow fronts across the bottom layer 
for each method. 

As a function of distance from the vacuum source, variations in final part 
thickness were measured after the parts were fully cured. The elevated and 
elevated with Plexiglas flow experiments were cured with a double bag after 
they were fully infused. This was done to gauge if a second vacuum bag affected 
part thickness. The final cured thickness of a part decreases as the vacuum 
source is approached, as shown in Figure 9. It should be noted that these 
averages are taken from parts manufactured using a line feed source on one end 
and a line vacuum source on the other end. 
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Figure 7. Infusion time across top of preform surface. 
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Figure 8. Infusion time across bottom of preform surface. 
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Figure 9. Cured part thickness vs. distance relative to vacuum source. 

As a consequence of part to part thickness variations, there is a corresponding 
variation in the fiber volume fraction of the final part. As the distance from the 
vacuum source increases, the fiber volume fraction of the laminates decreases; 
this phenomenon is apparent in Figure 10. 

4.3 Material Properties/Compressibility 

Several experiments were also performed on the compressibility of the fiberglass 
preforms to determine the effects of pressure on the Vf. Dry fiberglass preforms 
www l~dcd frum 0 lo 6 atm in the firs1 s&es of t&s. Figurcts 11 and 12 
illustrate the effect of pressure on 43 and 9 plies of glass fabric, respectively. The 
43-ply sample has the lowest initial Vf of 50%, and the 9-ply preform has a higher 
initial Vf of 55%. Since perfect fiber bundle nesting does not occur in practice, the 
thicker the preform the higher the potential for part to part variations due to an 
increase of free volume in every additional layer of reinforcement. By 
mechanically loading and unloading the preform, a maximum Vf may be 
attained prior to applying vacuum pressure for resin infusion. This, however, 
may adversely affect the resin permeability. 

10 



56 0 

550 

z 54.0 

.- 
z t > <' 

2 
L 520 

if 
3 510 

E 
> 

ii 
500 

.f 490 

is 480 

47.0 

46 0 

/-- 

Figure 10. Graph of fiber volume fraction change vs. distance relative to vacuum. 
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Figure 11. Compressibility curves for 43 plies of fiberglass fabric loaded twice from 0 to 
90 psi (full scale not shown). 
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Figure 12. Compressibility curves for nine plies of fiberglass fabric loaded three times 
from 0 to 90 psi (full scale not shown). 

Another series of tests was performed to simulate the effects of low vacuum 
pressure on the compressibility of a fiberglass preform. A load was applied to 
the dry laminate and held for approximately 30 min, as shown in Figure 13. This 
load is equal to 0.33 atm of pressure and would simulate consolidation and 
infusion under poor vacuum conditions or a broken vacuum bag scenario. The 
maximum Vf achieved under these conditions was approximately 46%. 
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Figure 13. Compressibility curves for nine plies of fiberglass fabric loaded from 0 atm to 
0.33 atm (O-5 psi). 



In Figure 14, a load was applied to a dry laminate and held for approximately 
30 min. This is equal to 1 atm of pressure and would simulate ideal vacuum 
conditions. The maximum Vr achieved was approximately 49%. The preform 
was then unloaded and reloaded to 1 atm, where the predicted Vf reached a 
value of 53%. 
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Figure 14. Compressibility curves for nine plies of fiberglass fabric loaded from 0 atm to 
1 atm (O-15 psi). Top curve loaded twice from 0 atm to 1 atm (O-15 psi), 
which resulted in a higher fiber volume fraction. 

Static and dynamic loads were applied to fiberglass preforms to evaluate the 
effect of loading on Vf. In Figure 15, a static load of 1-atm pressure was applied 
to the preform and held. A dynamic load, which cycled from 0.33 atm to 1 atm, 
was also applied to a nine-ply preform. This simulates the process of applying 
and releasing vacuum pressure during the bagging portion of a typical VARTM 
layup. 

The data show5 A small increase in the Vi. of the dynamically loaded preform. 
This may account for some final part to part variations observed after processing 
since the vacuum pressure and how it has been applied may not always be the 
same from one VARTM run to the next. It may also be a useful 
parameter/design tool in producing higher Vf parts with reproducible 
properties. Although there is some elastic recovery, or spring back, of the 
fiberglass preform associated with reducing the pressure, it is not fully reversible 
within the given time frame. When the vacuum pressure is reduced from 1 to 
0.33 atm in this experiment, the Vf is higher than the maximum Vf attained under 
statically loading the preform to 0.33 atm. 
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Figure 15. Comparison of static (15 psi) and dynamic (5-15 psi) loading on a fiberglass 
preform. 

An additional dynamic loading experiment was performed to determine the 
lubrication effect of resin on the compressibility of a fiberglass preform. A 
nine-ply preform was infused with resin and loaded dynamically from 0.33 to 
1 atm, as shown in Figure 16. This resulted in a theoretical Vf of 58% based on 
the cross-head displacement, which was a 16% increase over the dry fabric 
loaded in the same manner. This clearly illustrates the lubrication effect of the 
resin during any composites processing scheme. 
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Figure 16. Comparison of wet and dry fiberglass preforms under dynamic loading 
(5-15 psi). 
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4.4 Physical and Mechanical Properties 

The theoretical Vf values from the compressibility studies are compiled in 
Table 1. -Not only can the Vf be changed by increasing the consolidation 
pressure, but also by applying a cyclic load or lubricating the fibers. 

Table 1. Predicted fiber volume fractions of wet and dry fiberglass preforms compressed 
in an Instron mechanical test frame. 

Wet/Dry 1 No. of Plies ( Pressure 1 No. of Cycles 1 Vfatlatrn 
atm) 

-- I 43 O-6 2 51 dN 

dry 9 O-6 3 62 
dry 9 0.33 1 47 
dry 9 1 1 50 
dry 9 1 2 52 

9 0.33-l 6 50 
wet 9 0.33-l 6 59 

The actual fiber volume fractions (Vf) of the composite laminates produced under 
different conditions are listed in Table 2. However, all of the values do not 
correspond to the predicted theoretical values based on the Instron data. The Vf 
value of 60.14% attained in the mechanical press and the 60.65% attained from 
the cured Instron samples correlate with the 59% Vf predicted with the wet 
preform compressed in the In&on. The Vf values calculated from the single- 
and double-bag VARTM do not correspond to the predicted values of preforms 
loaded under 1 atm of pressure. This may be attributed to poor vacuum pressure 
during processing. Or, it may be due to the inability of the process to remove 
excess resm after complete wet out, resulting in a lower Vf. 

Table 2. Fiber volume fractions of composite parts processed under different conditions. 

Resin Infusion Method No. of Plies 
Single-Bag VARTM 8 
Double-Bag VARTh4 8 
Mechanical Press VARTM 8 
Instron Samples 9 

Fiber Volume Fraction (%) 
51.13 
49.93 
60.14 
60.65 

15 



The mechanical properties are presented in Table 3; they have been normalized 
to a Vf of 60%. The properties are consistent from one process to another as well 
as published manufacturer data [15]. The only obvious difference between the 
press and the VARTM processes is the variation in thickness and the Vf. The 
laminates processed between the platens of a mechanical press or in the Instron 
had a lower part thickness and higher Vf when compared to the VARTM 
laminates. 

Table 3. Mechanical properties of composite materials processed under different 
conditiok. 

5. Conclusions 

It has been quantifiably demonstrated that the elevation of the resin feed source 
relative to the part can significantly affect the time it takes to infuse a part using 
VARTM. The presence of the resin distribution medium’s effect on the infusion 
time has been examined quantitatively and qualitatively. It has also been shown 
that vacuum and Iresin source location affect resin infusion time and final part 
quality. Parts manufactured with either a single or double bag have a tendency 
to be thinner as the part approaches the location of the vacuum source. 

The amount of consolidation pressure, as well as the method of applying 
pressure, has an effect on the final part geometry and Vf of a thick-section 
composite lamina te. If thinner laminates with higher Vf are required for a given 
application, novel1 techniques of applying pressure and removing excess resin 
may be used to attain desired properties. 



The goal is to remove as much of the labor and waste from the VARTM process 
as possible and provide a flexible, effective means for ensuring that the process 
produces the desired mechanical properties. To that end, using external 
visualization techniques coupled with embedded sensors provides a wealth of 
information hitherto unavailable from which to produce a closed loop process 
control system for VARTM manufacturing. The control system can be 
continuously expanded to include some of the effects studied in this report, 
including the adjustment of resin feed source, uniformity of consolidation, and 
the effect of locating and actuating both resin and vacuum sources. 
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